VOLCANIC HAZARD AND MONITORING

Anno accademico 2022/2023 - Docente: MARISA GIUFFRIDA

Risultati di apprendimento attesi

Fornire le adeguate conoscenze dei fattori di pericolosità derivanti da attività vulcanica, in particolare eventi eruttivi di natura effusiva ed esplosiva con conseguente emissione di colate laviche, ricaduta di materiale piroclastico, emissione di gas ed altri eventi associati quali tsunami e lahars. Competenze relative alle principali tecniche di monitoraggio petrologico, geochimico e geofisico in aree vulcaniche.

Modalità di svolgimento dell'insegnamento

42 ore (6 CFU) di lezioni frontali; 36 ore (3 CFU) di attività di laboratorio comprendenti visite didattiche presso aree vulcaniche e centri di sorveglianza vulcanica. L'insegnamento sarà erogato in lingua inglese.

Prerequisiti richiesti

Fondamenti di vulcanologia, geochimica, geofisica della Terra solida.

Frequenza lezioni

Obbligatoria

Contenuti del corso

Introduction

§  Global distribution of active volcanoes and classification of volcanic activity type

§  Definition of Hazard and Risk assessment

Volcanic Hazard

§  Basaltic lava flow hazard

§  Volcanic ash impact and hazard

§  Pyroclastic density currents

§  Lahars

§  Volcanic gas and aerosol

§  Human and structural vulnerability

§  Volcanic Hazard and Risk map

§  Geostatistical models for the estimation of volcanic hazard

§  Mitigation interventions

Introduction to volcano monitoring techniques

§  History of volcano observations.

§  The present status of volcano surveillance and future perspectives.

§  Overview of methods and models to forecast eruptions and identification of precursory signals.

Geophysical surveillance

§  Seismo-volcanic signals for the prediction of volcanic eruptions and vulnerability curve assessment.

§  Ground-deformation and gravity observations.

§  Satellite and thermal monitoring techniques.

Monitoring of volcanic gases

§  Chemical characters of the gaseous phase in different stages of volcanism.

§  Ground-based gas measurements vs remote sensing techniques: the use of MultiGAS instruments compared to COSPEC and DOAS spectrometry.

Petrological monitoring of active volcanoes

§  Common petrologic procedures and operative protocols during ongoing eruptions.

§  Physical and chemical models applied to volcanic products to constrain the pre-eruptive properties of magmas.

§  Using crystal chemistry for tracking the temporal changes of volcano plumbing systems.

Case histories and prediction of volcanic eruptions

§  Impact of large eruptions on global climate

§  Integrated monitoring of volcanoes in Japan. The case of Sakurajima and Asama volcanoes.

§  Geochemical surveillance programs in areas of quiescent volcanism: Examples from Vulcano Island and the Phlegrean Fields.

§  The monitoring network at Mt. Etna.

Testi di riferimento

§  Dosseto A., Turner S.P. &Van Orman J.A. (2011). Timescales of magmatic processes: from core to atmosphere. Chapter 7. Wiley-Blackwell, 272 pp.

§  Latter, J.H. (1989). Volcanic hazards assessment and monitoring. In: Proceedings in Volcanology 1. Springer-Verlag, 625 pp.

§  Papale P. (2020). Forecasting and planning for volcanic hazards, risks and disasters. Elsevier, 708 pp.

§  Scarpa R. & Tilling R.I. (2012). Monitoring and mitigation of volcano hazard. Springer Berlin, 842 pp.

§  Shroder J.F. & Papale P. (2015). Volcanic hazards, risks and disasters. Elsevier, 532 pp.

§  Mader H.M. et al. (2006). Statistics in Volcanology. The Geological Society of London, 285 pp.

Programmazione del corso

 ArgomentiRiferimenti testi
1Global distribution of active volcanoes and classification of volcanic activity typesShroder & Papale (2015).
2 Definition of Hazard and Risk assessment Mader et al. (2006); Scarpa & Tilling (2012); Shroder & Papale (2015); Papale P. (2020).
3 Basaltic lava flow and volcanic ash impact and hazard Shroder & Papale (2015).
4Pyroclastic density currents and laharsShroder & Papale (2015).
5 Volcanic gas and aerosol Shroder & Papale (2015).
6 Human and structural vulnerability, volcanic hazard and Risk map. Dispense; Papale P. (2020).
7Geostatistical models for the estimation of volcanic hazard. Mader et al. (2006); Shroder & Papale (2015).
8 Mitigation interventions Dispense.
9 History of volcano observations, present status of volcano surveillance and future perspectives Shroder & Papale (2015); Scarpa & Tilling (2012); Dispense
10 Overview of methods and models to forecast eruptions with identification of precursory signals Papale (2020); Scarpa & Tilling (2012); Dispense.
11 Seismo-volcanic signals for the prediction of volcanic eruptions Papale (2020); Shroder & Papale (2015); Scarpa & Tilling (2012); Dispense.
12 Ground-deformation and gravity observations Scarpa & Tilling (2012); Papale (2020); Dispense.
13 Satellite and thermal monitoring techniques Scarpa & Tilling (2012); Dispense.
14 Chemical characters of the gaseous phase in different stages of volcanism Scarpa & Tilling (2012); Dispense.
15 Ground-based gas measurements vs remote sensing techniques Dispense.
16 Petrological monitoring of active volcanoes. Papale (2020); Dispense.

Verifica dell'apprendimento

Modalità di verifica dell'apprendimento

L’esame finale consiste in una prova orale di circa 30 minuti con votazione su tutti gli argomenti del programma. L’esame è finalizzato a valutare il grado di apprendimento raggiunto dallo studente sui contenuti teorici e metodologici indicati nel programma e le capacità di esporre correttamente i concetti acquisiti. A garanzia di pari opportunità, gli studenti interessati possono chiedere un colloquio personale in modo da programmare eventuali misure compensative e/o dispensative in base agli obiettivi didattici ed alle specifiche esigenze.

Esempi di domande e/o esercizi frequenti

Definition of Volcanic hazard and risk.

Impact and hazard related to basaltic lava flow.

Describe the most common mitigation interventions during volcanic eruption.

The present status of volcano surveillance in the world.

Types of observations that may provide timely warnings of volcano reawakening.

Seismic methods for monitoring active volcanoes.

Geodetic measurements and instrumentation.

Recent advances in satellite remote sensing technology.

Variations in chemical properties of volcanic gases before eruptions.

Benefits of using COSPEC or DOAS spectrometry with respect to direct gas sampling methods.

Petrological monitoring procedures and disclosures.

Common models applied to unravel the physical-chemical properties of magmas and reconstruct pre-eruptive dynamics.

The importance of modelling the chemical record of volcanic crystals.

ENGLISH VERSION